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The continuation of many-particle partial-wave scattering amplitudes to complex values of the total angu­
lar momentum is discussed in the framework of potential scattering. We show that if there is a continua­
tion for which a Watson-Sommerfeld transformation of the full scattering amplitude can be made, then it 
is unique and determines the behavior of the amplitude for large values of any single scattering angle. The 
continuation of the partial-wave Schrodinger equation to complex values of the angular momentum is dis­
cussed, and the results are generalized to the case when exchange forces are present. As a simple application 
of the results, we discuss a crude nuclear model to illustrate how sequences of rotational levels can be 
described by Regge trajectories. 

I. INTRODUCTION 

A SIMPLE description of two-particle potential 
-* ^ scattering amplitudes at large momentum trans­
fers has been given by Regge and others in terms of 
poles in the partial-wave amplitudes at complex values 
of the angular momentum.1-4 The question naturally 
arises as to whether this simplicity persists when multi-
particle scattering processes are considered. 

This question is of interest for several reasons. The 
large momentum-transfer behavior of a two-particle 
scattering amplitude is important in relativistic prob­
lems where it represents large energy of the cross 
channel. In problems at relativistic energies, however, 
two-particle channels are always coupled to channels 
of higher particle number by the possibility of 
particle production. It is important to answer the 
question of whether this coupling of multiparticle 
processes gives rise to cuts in the angular momentum 
plane and if so, to understand the dynamical mechanism 
which produces them. 

Multiparticle potential scattering provides a simple 
starting point for investigating the analytic properties 
of many-particle amplitudes and a model in which 
some degree of rigor can presumably be obtained. If 
past experience is a guide, potential scattering should 
possess many of the features of the relativistic problem, 
but not all of them. A potential scattering model should 
serve to isolate the dynamical mechanism through 
which these relativistic features arise. 

The continuation of multiparticle potential scattering 
amplitudes to complex values of the angular momentum 
is of interest in its own right because of possible appli­
cation to scattering problems in which nuclei are in­
volved. For instance, one would like to understand in 
more detail how sequences of nuclear rotational levels 
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can be correlated with definite Regge trajectories. 
Before any useful approximate descriptions can be 
made, it is desirable to know the analytic properties 
of the exact amplitudes. 

Some general properties of the continuation of many-
particle scattering amplitudes in the total angular 
momentum by means of the Schrodinger equation are 
discussed in this paper. For simplicity, we have con­
sidered amplitudes which involve spinless and non-
identical particles. 

In Sec. II the partial-wave Schrodinger equation is 
continued to complex values of the angular momentum. 
It is shown that if there is an analytic continuation of 
the partial-wave amplitude which determines the 
asymptotic behavior of the full amplitude for large 
values of one scattering angle, then it determines the 
asymptotic behavior in any other single scattering 
angle. In Sec. I l l the generalization needed to include 
exchange forces is given. Section IV contains an appli­
cation of some of the results to a crude nuclear model 
illustrating how sequences of rotational levels with 
ground-state spins greater than zero or one-half can be 
described by Regge trajectories. 

II. THE PARTIAL-WAVE EXPANSION OF A 
MANY-PARTICLE SCATTERING 

AMPLITUDE 

Every many-particle system has three degrees of 
freedom which correspond to total rotations. Invariance 
of the Hamiltonian under these rotations implies the 
conservation of the total angular momentum L and its 
projection on a space-fixed axis M. The coordinates 
which specify rotations of the entire system we may 
take to be three Euler angles <p, 0, \f/, relating a "space-
fixed" and a "body-fixed" set of Cartesian coordinates.5 

There are many ways of specifying these angles. Each 

5 If Lx, Ly, Lz are components of the total angular momentum 
L, a rotation R through <p, 0, -ty is given by 

R(<pjd,\P) ^e^W^e**1". 

With appropriate relabeling, the conventions used in this paper 
are those of A. Edmonds, Angular Momentum in Quantum Me­
chanics (Princeton University Press, Princeton, New Jersey, 
1957). 
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way corresponds to a definite convention as to how the 
body-fixed axes are fixed in the system of particles.6 

A complete set of commuting observables conjugate 
to the three Euler angles are L2, Lz, and Lg'f the total 
angular momentum and its projection on the space-
fixed and body-fixed z axes, respectively. The eigen-
functions of these quantities are discussed in the 
Appendix and defined by 

VDMKL{<PM) = L(L+ 1)DMKL(<PM) , 

LzDMK
L(<p,drt) = MDMKL(<pM), (2.1) 

LJDMKL(<PM)===KDMK
L(<PM). 

Consider the scattering of N particles whose initial 
momenta pi, p2, • • •, pj\r will be denoted collectively by 
p. The scattering wave function is a function of the 
coordinates ri, X2, • • •, rjy denoted collectively by r, and 
the momenta of the incoming wave; ^=^(r,p). De­
noting the Euler angles of the coordinates by J2r, and 
those of the momenta by Qp, we may expand 

lK*,p)= (STT2)-1 E (2L+l)fK,K
L(r,p)DMK>L(Qr) 

X Z W ( G „ ) 
= ( 8 T T 2 ) - 1 L (2L+l)fK'KL(r,p)DKK>L(QrP). (2.2) 

The sum ranges over positive integral values of L and 
integer If, K, K' such that \M\ <L, \K\ <L, \K'\<L. 
The last line follows from the addition theorem7 for the 
eigenfunctions of L2, Lz, LJ, where Q,rp are the Euler 
angles of r with the body-fixed axes for p used as the 
space-fixed axes. Similarly, the scattering amplitude 
may be expanded as 

(p' | r |p>= (8**)-1 E (2L+i)TK.KL&,p) 

XDKK>L(SIP>P). (2.3) 

If 7" is the kinetic energy, the Schrodinger equation is 

[ r ( r ) - E + 7 ( r ) > ( r , p ) = 0. (2.4) 
Since the kinetic energy is at most quadratic in the 
components of L, it is straightforward to use Eqs. (Al) 
to project out the angles \p and <p obtaining a partial-
wave equation 

2 > ' ZrK>K»L(r)+(V(r)-E)dK>K»l 
XtK»KL(r,p) = 0. (2.5) 

The potential energy and energy terms are rotational 
scalars and hence diagonal in K. Again the sum is over 
\K"\<L. 

For the case of two-particle potential scattering, the 
scattering amplitude for complex values of the angular 
momentum is found by writing a radial Schrodinger 
equation in which L appears as a parameter and then 
solving for the scattering solution at complex values of 

6 For some examples, see the following paper Q . B. Hartle, 
Phys. Rev. 134, B620 (1964)] and G. Derrick and J. Blatt, 
Nucl. Phys. 8, 310 (1958). 

7 See Ref. 5, p. 63. 

this parameter. The amplitude can be read off of the 
scattering solution and is the unique one for which a 
Watson-Sommerfeld transformation of the full ampli­
tude can be made to determine its large momentum-
transfer behavior. 

We will try and follow this program for the case of 
many particles. A difficulty is that in Eq. (2.5), L not 
only appears as a parameter but also determines the 
number of coupled equations. Specifically, there are 
(2Z,+1)2 equations, one for each value of K and K'. 
How can L become complex if it determines the number 
of equations? 

The difficulty can be overcome by defining additional 
unphysical equations and unphysical wave functions 
which are not coupled to the physical quantities for 
integral values of L and such that the number of 
equations does not depend on L. Indeed, since Eq. 
(2.5) contains only the matrix elements from Eq. 
(Al), we can obtain a sensible set of equations at 
complex L simply by ignoring the restrictions on K, 
K', and K" in Eq. (2.5) and allowing the sum to range 
over all integer values. 

An equivalent way of doing this is to continue the 
DKKfL to complex L so that they form a matrix with 
K and K' ranging over all integers from — <*> to + <*>. 
This is discussed in the Appendix. Since L2 commutes 
with the Hamiltonian, we can demand that 

*L(r,p)=(8**)-i £ (2L+l)fK,KL(r,p) 
KK'=-vo 

XDKK>L(Vrp) (2.6) 

solve the full Schrodinger equation (2.4). Projecting 
out the angles \p and <p, we arrive at the infinite set of 
coupled equations mentioned above. Since the DKK>L 

at integral values of L are nonzero only if K and K' 
are simultaneously greater than or less than L in 
absolute value, the equations with \K\<L, \Kr\<L 
will decouple from the rest and coincide with the 
physical ones. This can also be seen from Eq. (Al). 
The presence of unphysical wave functions is familiar 
from the problems involving the scattering of particles 
with spin.8 L now occurs only as a parameter in the 
larger set of equations and the solutions can be ex­
amined at its complex values. 

The asymptotic behavior of the full amplitude can 
be determined from the singularities in the angular 
momentum plane if the amplitude has the following 
properties: 

(i) T-_K>KLDK>KL(ti) is an analytic function of L 
with singularities consisting of poles and cuts confined 
to the region ReL<Zo for some LQ. 

(ii) TR'KL decreases sufficiently fast as \L\ —> °o so 
that the integral in the Watson-Sommerfeld trans-

8 M. Gell-Mann, Proceedings of the 1962 Annual International 
Conference on High-Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962); see also Ref. 2. 
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formation over a large semicircle in the right-half plane 
tends to zero as its radius becomes large. 

In the following paper we will outline a proof that 
by solving the Schrodinger equation continued to com­
plex L as above, an analytic continuation of certain 
amplitudes can be obtained with properties (i) and (ii), 
and moreover, that the possibility of cuts can be 
dispensed with. 

Under assumption (i), the partial-wave expansion 
can be written 

1 oo r 

<p'|r|P)=-— z / 
(2L+l)dL 

CKK' sin7rL 

XT_K'* L ^ 'X L (co) . 

Here, we have used the symmetry relations of the 
DKK>L($1) for integer L,9 so that if £ 2 ^ denotes the 
angles <p, 0, \p; co denotes ir—ip, T—O, <p. The contour 
CKK' encloses the real axis R e L > [max( \K\9 \K'\)—\~]. 
I t is assumed to exclude all poles but those of sinxL. If 
a cut crosses the real axis in this region, it would be 
necessary to subtract out its contribution. 

Under assumption (ii), the contour can be deformed 
to a line T parallel to the imaginary axis at ReL= — §, 
yielding 

<P' 
f\T\V) = ~^~\ 

(2L+l)dL 

r sin7rL 
Y^K'K T-K'KL 

X Z W L ( c o ) + I > K ' Lfc (16irH)-1(-\)k(2k+l) 

XT_K,K
kDK,K

k(a>)+Zi drlsmirai(r)'] 

XYsK'K PK>KKT)DK'Kaiir)(p)+?:n ( s i n ^ n ) " 1 

X 2 > x BK'K^DK'KHU) , (2-7) 

where pK'Kl and BK'Kan are simply related to the dis­
continuities and residues of T-K>KL, respectively. The 
sum over k ranges over integers such that 0<k 
<m&x(\K'\,\K\). 

For large values of s=cos0, and integer k such that 
\k\ <max(\K'\,\K\)9 DK'KL behaves like (see Ap­
pendix) 

DK'K^^gK'KKvifr)*-*-1 (2.8a) 
and like 

DK,K
L{o>)^gKIK

L(vrt)zL (2.8b) 

for other L. The asymptotic behavior of the amplitude 
is then determined by the position of the singularity 
furthest right in the L plane. For instance, suppose it 
is a pole at position a, then 

<jt\T\v)~<JiK'KBK,KagK'Ka)za. (2.9) 

The continuation which satisfies conditions (i) and 

(ii) and thus determines the asymptotic behavior is 
unique. The uniqueness may be established by con­
sidering the partial-wave expansion of 

J # J d<p<riM*<riN*<$'| r |p) (2.10) 

and applying the discussion of Squires.10 Briefly, sup­
pose there are two continuations TMNL(1) and TMNL(2) 

which satisfy the conditions (i) and (ii) and agree with 
the physical values on the integers; then 

TM^(1)+(L-L^1ZTMNL(1)-TMNL(2)2 (2.11) 

will also. The quantity in Eq. (2.10) has a unique 
asymptotic behavior which we may say is weaker than 
zLo. If we take ReL x > ReZo, we must have 

TMNL*(X)=TMN^{2) (2.12) 

in order for the continuation (2.11) to give the correct 
asymptotic behavior. Since this holds for any Lx for 
which ReZa>Re£0 , it must hold everywhere. 

In a two-particle scattering problem, there is essen­
tially only one scattering angle. For many-particle 
scattering, however, there are many. Each may be 
characterized as an angle between z axes fixed in the 
initial and final systems of particles. As we have men­
tioned before, there are many ways of choosing how 
the body-fixed axes are fixed in the system of particles 
and hence many scattering angles. We will now show 
that if a continuation exists which determines the 
asymptotic behavior in one scattering angle, then it 
determines the behavior in all. 

From a single choice of body-fixed axes, all others 
can be found by rotations in the body-fixed frames of 
the coordinates and momenta. Let Q± and O2 be two 
choices of Euler angles and W the rotation which sends 
tti into 02. For integer values of L, one knows how the 
DMKL transform under this rotation since they form a 
representation of the rotation group 

DMKL(n2) = DMKL(WQ1) 

= Z * Z W W Z W ^ i ) , (2.13) 

the sum ranging from N=—L to N=+L. Several 
authors16 have shown that the DMKL for complex L also 
satisfy Eq. (2.13) for a certain range of angles, the sum 
then being extended from N= — <*> to ^ = + 00. An­
other derivation is given in the Appendix. For angles 
outside this range a similar decomposition of 
DMKL{W&i) can be made [see Eq. (A12)] and the 
relations derived below hold with slight alteration. 

To determine how the partial-wave functions ^K'KL 

transform under a new choice of body-fixed axes, con­
sider the rotational scalar ^L(r,p) of Eq. (2.6). Denote 
by W\ the rotation in the body-fixed coordinate frame 
and by PF2 the rotation in the body-fixed momentum 

9 See Ref. 5, p. 60. 10 E. Squires, Nuovo Cimento 24, 242 (1962). 
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frame. These will be functions of the internal variables 
r and p, respectively. Setting ttrp= W£lrv

rWh we have 

^( r ,p) = (STT2)-1 2 > * (2L+l)*K,KL(r,p) 
XDKK^iWAjWj 

= (87T2)-1
 ZK>K (2L+l)fK,KL(r,p) 

XZN>N DKNL{W2)DNN,L(tirp') 

X Z W L ( J F i ) . (2.14) 

The wave function therefore transforms like 

^N'NLir,p) = T.K'KDNfK.L{Wl)^K'KL(r,p) 

XDKNLQV2). (2.15) 

Similarly, if rotations are performed in the initial and 
final momenta so that u= Yyu'Yi, the amplitude trans­
forms like 

T'-N,N
L=ZK>KDK,N,L(Y2)T_K,K

LDNK
L(YI). (2.16) 

Since terms with different complex angular momenta 
L do not mix under rotations, a singularity which 
determines the asymptotic behavior in one represen­
tation will also determine it in any other. For instance, 
if the amplitude has a large z behavior given by Eq. 
(2.9), then the asymptotic behavior in any other scat­
tering angle zf would be given by 

<P' I T\ p>~ (LK>K B'K>KagK>KaW*, (2.17) 
where 

3 W = 2 > * DN.K."(YI)BN.N"DKN"(Y1) (2.18) 

and Fi and Y% are the rotations appropriate to the 
changes of body-fixed axes in the initial and final states, 
respectively. 

Since the continuation which determines the asymp­
totic behavior in a given scattering angle is unique, we 
conclude that there is one unique continuation (if it 
exists) which determines the asymptotic behavior in 
any scattering angle. This conclusion does not depend 
on the nonrelativistic model being considered here. It 
is a general property of the Watson-Sommerfeld trans­
formation and will hold for the relativistic amplitudes 
if they satisfy the assumptions (i) and (ii). 

III. EXCHANGE FORCES 

In the nonrelativistic limit of a problem in which 
particles can be created and destroyed at a vertex, 
certain nonlocal potentials can be expected to occur. 
In particular, there is the class of potentials which 
rearrange the positions of the particles but otherwise 
act in a local way. Such potentials have the form 

7=E.XF»(r1 ,--->r^)Pw > (3.1) 

where Pw is a member of the permutation group on N 
objects. We will now consider the simple generalization 
of the preceding section necessary to continue to com­
plex values of the angular momentum amplitudes 
produced by such forces. 

The full Schrodinger equation (2.4) can be written 

tT(t)-E+\ Ln 7»(r)i,»>(T,p) = 0. (3.2) 

Operate on this equation with the permutation P*. 
Since the permutations form a group, we have 

where (P#n is a representation of Pw. The indicated 
operation then gives: 

Ey L(r-E)8ij+\ Zn F*n(r)(P^>i(r,p) = 0, (3.4) 

where 
r t .(r)=r(P<r), 7<»(r)=F»(P ir), 

Mr,p)=lKP*,p). 

This is a set of six coupled equations on the six 
unknowns ^i(r) involving only local potentials. The 
corresponding set of partial-wave equations can then 
be continued to complex L as discussed in Sec. II, and 
every coefficient will be bounded by a polynomial for 
large \L\. The presence of exchange operators, on the 
other hand, could entail factors with asymptotic be­
haviors like e±irL and perhaps lead to a violation of 
assumption (ii). The original Eq. (3.2) was solved 
with the boundary condition that it approach a plane-
wave <p as the potential tends to zero: 

*(r,p)-+*(r,p),- X->0. (3.5) 

The same solution may be generated by solving Eq. 
(3.4) with the boundary conditions 

ifcfap) -> *><frp)= <p(Pit,p), X-> 0. (3.6) 

If P i = l , the scattering solution is then given by 
^(r,p) = ^i(r,p). Equivalently, we can write 

lKr,p) = Li*y(r ,p) , (3.7) 

where \pij has the boundary condition 

&ifop) -» fcy^-(r,p), X -> 0. (3.8) 

For a plane wave, a permutation acting on the co­
ordinates is the same as the conjugate permutation 
acting on the momenta 

*>i(r,p)= *>(P,*,p) = *(r , i \ tp) . (3.9) 

Every permutation of the momenta can be written as 
the product of a transformation Qi which changes the 
lengths of the relative momentum vectors p and a 
rotation of the body-fixed axes R{. 

Pi=QiRi. (3.10) 

The partial-wave expansion of ^*(r,p) can then be 
written 

<*(r,p)= (Wr^LK'K (2L+l)<pK,K
L(r,QJp) 

XDKK>L(RM. (3.11) 
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The boundary condition for the partial-wave functions 
of \f/ij(r,p) are then 

ypiK>,iKL{r& -> dij2>, <pK'K»L(r,Q;p) 
XDK„K

L(R;). (3.12) 

Consider the wave functions \piKfjKL, denned by the 
boundary conditions 

faK'jKL -> « i , W ( # ) • (3.13) 

Since the Schrodinger equation is linear, multiplication 
of the boundary condition by the constant matrix 
DK'KL{R3*) only multiplies the solution by the same 
matrix. 

l fc* ' ,y*L=i;x" fiK>jK»LDK'>KLm. (3.14) 

The scattering solution, Eq. (3.7), can then be written 

*(r,p)= (S^2)"1 ELK'KJ (2L+1)$1K,JK
L 

XDKK>L(R^rp). (3.15) 

Similarly, the partial-wave expansion of the amplitude 
becomes 

<p'| r |p>= (STT2)-1 ZLK'KJ {2L+\)T1K,tjK
L{p',p) 

xDKK,L(R;np,p), (3.16) 

where the amplitudes TiK' JKL are computed from the 
scattering solutions $iK'jKL-

Equation (3.4) has only local potentials. The bound­
ary condition (3.13) has the same large \L\ behavior 
as that for a partial-wave expansion of (3.5). If there 
is an analytic continuation of the problem of a single 
three-particle channel with local potentials which 
satisfies criteria (i) and (ii) of Sec. I I , it is not un­
reasonable to expect that the same result holds for the 
six-coupled three-particle channels of Eq. (3.4). 
TIK',JKL can therefore be assumed to satisfy conditions 
(i) and (ii) and the Watson-Sommerfeld transformation 
of Eq. (3.16) can be performed. 

For nonidentical particles, Eq. (3.4) may not be 
further decoupled and a given pole will appear in all 
the analytically continued partial-wave amplitudes. 
However, if the particles have equal masses and 

LPi,Vl=0, (3.17) 

as in the case of identical particles, a further decom­
position of the set of equations may be obtained by 
reducing the representation (P#n. The amplitude can 
be decomposed into a sum of terms [linear combinations 
of the arguments of (3.16)], one for each irreducible 
representation of the permutation group. The poles in 
one of these terms need not appear in any other. This 
is the analog of signature in the two-particle case. If 
the particles are truly identical (and not, for example, 
differently charged and hence distinguishable pions 
interacting by nuclear forces), only the poles of the 
symmetric or antisymmetric amplitudes would corre­
spond to physical states. 

Let us consider the sample example of three particles 
using the choice of Euler angles discussed by Blatt and 
Derrick.6 In these coordinates, the body-fixed z axis 
is taken normal to the triangle formed by the three 
particles and directed so that a right-handed screw will 
advance along it if turned successively through particles 
1, 2, 3, and back to 1. Orthogonal x and y axes are 
defined invariantly as discussed by these authors, for 
instance, by taking the x axis to lie along the principle 
axis of the triangle with greatest moment of inertia. 

With these definitions, an interchange of particles 
changes only the sign of the z axis. 

PiDK,K
L(Tr-t,<jr-e, <p) 

= DK>KL(ir-rl,,d, cp), fc=-l, (3.18) 

where di is + 1 or — 1 as the number of interchanges in 
Pi is even or odd. The remaining variables p may be 
taken to be the relative momenta pu, p2z, pn- A Regge 
pole term in the full amplitude then has the form 

(sinTra)-1 X > K [FK'K^P'&DK'K*^-^, TT-0, <p) 

+GK'K°{]t,p)DK>Ka(v-yfri 6, *>)]. (3.19) 

If conditions (3.17) are satisfied, there will be three 
types of poles for the symmetric, antisymmetric and 
mixed representations of the permutation group on 
three objects. Equation (3.19) will then have the 
corresponding symmetry. 

IV. A SIMPLE NUCLEAR MODEL 

In this section we discuss a simple consequence of 
the decoupling of the physical and unphysical solutions 
to Schrodinger's equation at integral values of L. On 
the basis of a crude model, nuclear rotational levels are 
correlated with definite Regge trajectories. The presence 
of the unphysical solutions at integral values of L 
enables the theory to incorporate sequences of rotational 
levels whose lowest state possesses a spin greater than 
zero. 

Let us first examine the implications of the unitarity 
condition for the behavior of a trajectory as it passes 
through an integer. The unitarity condition can be 
continued to complex L by an application of Carlson's 
theorem11 and assumption (ii) of Sec. I I . One of the 
consequences of the resulting unitarity relation is that 
the residues of a Regge pole in a many-channel ampli­
tude factor.12 

BK'Ka{p',p)-bK>«(p')bKa{p). (4.1) 

Suppose a trajectory a(E) passes through a positive 
integer ao at energy E0. Since there is no coupling 
between the physical and unphysical solutions at an 

11 R. Boas, Entire Functions (Academic Press, Inc., New York, 
1954), p. 153. 

12 V. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 8, 
343 (1962). 
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integer, the amplitudes which connect these states must 
vanish. 

TKK>L=TKtK
L=0 \K\<L, \K'\>L, 

L integer. (4.2) 

If a pole appears in one physical amplitude, it must ap­
pear in all of them, and similarly for the unphysical amp­
litudes. Factorization then implies that either &/ra° = 0 
for all K such that \K\ > a 0 or bK

ao=0 for all K such 
that | -K" | <ao. In the first case, the pole appears in the 
physical and not the unphysical amplitudes. In the 
second case, the opposite is true. Every Regge tra­
jectory as it passes through an integer thus has a choice. 
I t can either appear in the physical or unphysical 
amplitudes but not both. 

At integral values of L, it is only the poles in the 
physical amplitudes which correspond to bound states. 
Thus, as a trajectory crosses and integer value, it does 
not always correspond to a physical state. Which choice 
it makes at a given integer depends on the particular 
dynamics at hand. 

To illustrate the application of these alternative 
possibilities for a trajectory at the integers, we will 
consider a standard model from nuclear physics. The 
model consists of a single-particle scattering off a rigid 
rotator core.13,14 For simplicity, we will take the particle 
outside of the core to be spinless. The wave function is 
then a function of the three Euler angles which specify 
the orientation of the core, cp, 0, yp\ and the position of 
the particle, r. If this position is specified in the body-
fixed system, then the three Euler angles are conjugate 
to the total angular momentum L. The partial-wave 
expansion is again 

^ f c M ^ ^ E i ^ f e ^ r f e ^ ^ W ) . (4.3) 

If I is the angular momentum of the rotator, Ja, a=l, 
2, 3, its moments of inertia, and 1 the angular mo­
mentum of the particle, the Hamiltonian for the system 
can be written 

H=HpJrHTot, 

1 /d2 2d P\ 
Hv= - — ( — + - - )+V(T) , (4.4) 

2m\dr2 r dr r2/ 

tl rot== 2-J a J- a / £J a • 

In the rotational part of the Hamiltonian, we can 
replace I by L—1. We first make the standard approxi­
mation that the nucleus is spheriodal 

Jx=J2=J, (4.5) 

and that the potential is symmetric under rotations 

13 A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab, 
Mat. Fys. Medd. 27, No. 16 (1953). 

14 This model has also been considered for the case of complex 
angular momentum and separable potentials by E. Kazes, Nuovo 
Cimento 27, 995 (1963). 

about the body-fixed z axis and reflections in the body-
fixed x-y plane. I t is conventional to demand that wave 
functions must be invariant under rotations of the 
rotator about its figure axis, or equivalently that the 
figure axis component of the rotator angular momentum 
(Lz—h) is zero. 

We can then write 

HTOt= ( l / 2 / ) ( L - l ) 2 = (l/2J)(V+P~2Ldh) 

+ # c o u p , (4.6) 
Hcon^J~\L+L+LJ+). 

In the first approximation, we neglect the coupling 
term so that Lz is a good quantum number. The partial-
wave Schrodinger equation is then 

r 1 /d2 2d\ / 1 1 \ -| 

—(—+ h i +—W-V(r)+S 
L2m\dr2 r dr/ \2mr2 2J7 J 

X^* L ( r ) = 0 , (4.7) 
with 

L(L+1)-2K2 

8=E . (4.8) 
2 / 

We wish to continue the amplitude to complex L. 
Clearly, this amounts to continuing the solutions of 
Eq. (4.7) to complex values of 8 with scattering 
boundary conditions. I t is not important to consider 
the resulting analytic properties in detail. The model 
is an approximation to a many-particle system only 
for energies E near the bound-state energies; that is, 
only for complex L near those values for which bound 
states exist at the given E. The bound states of Eq. 
(4.7) are reflected as poles in the scattering amplitude 
in the quantity 8. Let 8K° be the position of one such 
pole which will, in general, depend on K if the potential 
is only axially symmetric. To each such pole, we have 
a trajectory in the right-half plane. 

LK(E)+i= +tl+2K2+2J(E- 8K«)J'\ (4.9) 

The levels which lie on a single trajectory are all 
members of a given rotational band. 

Since K is a good quantum number for this approxi­
mate problem, the amplitude is diagonal in it. Each 
diagonal element TKKL has its own trajectory LK(E). 
At the integers, the physical amplitudes are those for 
which \K\<L and thus as LK(E) crosses an integer, 
it represents a physical bound state only for LK(E) 
> \K\. Each trajectory thus represents a sequence of 
rotational levels with spin values L—\K\, \K\ + 1, 
\K\+2} •••. The trajectory itself, however, crosses 
all integer values. 

A requirement usually imposed on this model is that 
the wave function be invariant under reflections in the 
x-y plane of the body-fixed system. The results of this 
assumption are in good agreement with experiment 
where the model applies. For KT^O, the character of 
the spectrum remains the same; there is a sequence of 
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levels with spins L=\K\, \K\ + 1, \K\+2, .-•. For 
K=0, however, a new feature arises. 

Let R denote a rotation about the body-fixed y axis 
by X. For K=0, ^oL(r) is invariant under rotations 
about the body-fixed z axis, so that 

ityoL(r)=^oL(r), (4.10) 

where v is the parity of ^oL(r). Because of the axial 
symmetry of the problem, the requirement of invariance 
under reflections is equivalent to a requirement of 
invariance under R. Taking M—0 for simplicity, the 
wave function satisfying this requirement is 

^(TycPM) = ̂ oL(r)ZPL(cose)+vPL(-cosd)']. (4.11) 

A given Regge trajectory in ̂ oL(r) will now represent a 
physical state only at every other integral value of L. 
It thus describes a sequence of levels with L=0+ , 2+, 
4+ ••• or JL= 1-, 3~, 5-, •••. 

Suppose K is no longer a good quantum number. 
This happens when we consider the effect of HCOup or 
introduce small asymmetries in the moments of inertia 
Ji, 72. The trajectories can no longer be computed 
exactly, but we can assume that for small symmetry 
breaking terms they do not depart strongly from Eq. 
(4.9). Each trajectory is characterized by a number 
\K\ which determines the diagonal amplitude TKKL 

in which it appears as the symmetry breaking coupling 
disappears. As the coupling is turned on, the pole will 
appear in the amplitudes to which TKKL is coupled. 
In general, this will be all the amplitudes except at the 
integers where the pole will appear in the physical 
amplitudes if K is physical (\K\<L) and in the un-
physical amplitudes if K is unphysical (\K\>L). 

Thus, even in the case when L% is not conserved, we 
have a sequence of rotational levels or bands correlated 
with a definite trajectory and characterized by a number 
K which is the spin of the lowest physical state in the 
band. For integer spins greater than K, the trajectory 
appears in the physical amplitudes, and in the un­
physical amplitudes for spin values less than K. 
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APPENDIX: PROPERTIES OF THE ANGULAR 
MOMENTUM EIGENFUNCTIONS 

Denote by <p, 6, \f/ the three Euler angles conjugate 
to the total angular momentum L(<p,0,\£). L is a differ­
ential operator on functions of these angles whose 
Cartesian components we denote by L/(<p,0,^) in the 
body-fixed system and by Li(<p,0,\f/) in the space-fixed 
system.15 The DMKL(<P,0}}{/) are then defined for com-

15 For explicit expressions, see Ref. 5. 

plex L by 
DOOL(<PM) = PL(COS6), 

±£UL±M)(L^M+l)J*DM^iKL 

= LT(<PM)DMKL, (Al) 

=F[i(£±20 (L=FK+ 1)J^DM,KTIL 

= £ ± ' ( M ^ ) £ W s 

where L±, L0 are the spherical components of L. One 
choice of the branch of the square root must be made, 
say by taking it real for large real L. Since L2, L±, L0 

satisfy the usual commutation relations, the DMKL 

defined in this way also satisfy the differential equations 
(2.1). The solutions of these equations can be expressed 
in terms of hypergeometric functions. It can be checked 
from the definition (Al) that the DMKL can be written 

DMKL(<PM) = eiM*dMKL (cos$)eiK*, 

r(L+M)\{L-K)\^ 
dMKL{z) = \ 

L(L+K)l(L-M)U 
/\+z\(M+K)/2sl_ZK(M-K)f2 

\ 2 / \ 2 / (A2) 

X F[ -L+M, L+M+l, 
(M-K)l \ 

l - s \ 
M-K+l, J, 

for M—K>0, other cases being obtained from the 
symmetry relations for the dMKL(z).9 In particular, we 
have 

DMoL(<pM) = PLM(cosd)eiM* 
Xt(L-M)l/(L+M)^, (A3) 

DOKL(<P,W)= ( - l ) ^ o L ( W , r f M, K>0. 

The DMKL thus defined reduce to the usual values for 
integral L and \M\ <L, \K\ <L. 

To prove that the DMKL as defined for complex L 
by (Al) satisfy Eq. (2.13),16 we begin with the addition 
theorem for Legendre functions17 

oo (L-N)\ 
PL(X) = PL(X2)PL(X1)+2 £ PLN(X2) 

N-i (L+N) I 

XPLN(XI) cosA^i+ifr-gr). (A4) 

Here, #=cos#, #i=cos0i, #2=cos02, where <p, 0, \f/ are 
the angles of the rotation resulting from successive 
rotations through <piOi^i and <p202̂ 2. Applying (A3), 

16 Compare, J. Gunson (to be published), and E. Beltrametti 
and G. Luzzato, Nuovo Cimento 29, 1003 (1963). 

17 A. Erdelyi et a/., Higher Transcendental Functions (McGraw-
Hill Book Company, Inc., New York, 1953), p. 168. 
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this can be written 

DQO
L(<PM)= Z DoNL(<P2M2)DNQ

L(<phehyPi). (A5) 
JV=-oo 

Consider the operator L+(<ph6h\pi) on functions <p, 0, $ 
with <P2, 02, fa remaining constant. L+(cpi,0i9fa) may be 
expressed as a function of the new variables >̂, 0, \p as 
L+(<Pl(cpM)MfA^)MfA^)y To do this, regard 
the transformation of variables as a change of coordi­
nates under which L transforms like a vector 

XLjfatyAdMtAvMfAv))- (A6) 
The left-hand side of (A6) gives the components of L 
along the rotated axes while we need them along the old 
axes as functions of the new variables. To find these, 
multiply the new components by the matrix 
jjD(1) (̂ 2,̂ 2,̂ 2)D"1, thus obtaining 

L+(cp^) = L+(cp1^}6Jcp)M^A<p)M^A<p))' (A7) 

Thus, applying (L+)M to both sides of (A6) and multi­
plying both sides by a common normalization factor, 
we find 

00 

DMoL(<P,Otf)= £ DMNL(<P2Afa) 
2V=-oo 

X W ( ^ i M i ) . (A8) 

A similar procedure with Z,_, L+, LJ gives the desired 
result (2.13). The differentiation under the summation 
is justified since (AS) converges like (tan0i/2 tan02/2)iV 

and hence uniformly in 0i, 62 provided 

O<01+02<7T, O<0i<7T, O<02<7T. (A9) 

A similar formula valid when 

7T<0l+02, O<0i<7T, O<02<1T (A10) 
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can be derived from Eq. (A4) by replacing 0i by ir—0X, 
02 by 7T—02 and noting that15 

i '±(M*)=£'T(^-^rt . 
One finds 

00 

DMKL(<P,0,\l/)-= £ D-MNL(-<P2, 7T-02, fa) 
N=-oo 

XDN,-K
L(<Ph TT-SI, -fa). (A12) 

More comprehensive discussions of these formulas can 
be found in Ref. 16. 

For integer L, the elements of DMKL are nonzero only 
if either 

\M\>L and \K\>L 
or 

\M\<L and \K\<L. 

The second class of elements corresponds to the usual 
DMKL- At integers, the matrix DMKL is thus in block 
form. 

The behavior of dMKL(z) for large values of L and z 
has been discussed by Charap and Squires.2 In order 
to display the behavior of Sec. II, we write dMNL as 

dMKL(z) = KfMKL(z) + fMK~L~1(z)l, 

where for M—K>0 

fMKL=L(L+M) l(L-K) \{L+K) l(L-M) I]"1'2 

/Z+l\ (M+K)t2/2—1\L~UM+K)M 

x ( ~ ) ( — ) ( - 1 ) " " > " 

X(2L+1)\F(-L+M, -L+K, -2L, 2 / (1-0)) . 

The desired asymptotic behavior then follows from the 
hypergeometric series. 


